ΕΠΙΣΤΡΟΦΗ
Υλοποίηση μέσω γλώσσας Wolfram στο WLJS Notebook .
Μερικές Διαφορικές Εξισώσεις
Εξίσωση κύματος ($\partial_{tt} u-c^2 \nabla^2 u=0$)
Τρεις μεταβλητές (πεπερασμένο χωρίο)
Clear["Global`*"]
D[u[x, y, t], {t, 2}] ==
D[u[x, y, t], {x, 2}] + D[u[x, y, t], {y, 2}]
u[x, y, t] = X[x] Y[y] T[t]
PDE = D[u[x, y, t], {t, 2}] ==
D[u[x, y, t], {x, 2}] + D[u[x, y, t], {y, 2}]
PDE[[1]]/(X[x] Y[y] T[t])
PDE[[2]]/(X[x] Y[y] T[t]) // Expand
ODEx = X''[x] == -kx^2 X[x]
ODEy = Y''[y] == -ky^2 Y[y]
solX = DSolve[ODEx, X[x], x]
solY = DSolve[ODEy, Y[y], y]
(X[x] /. solX[[1]]) /. x -> 0
(X[x] /. solX[[1]]) /. x -> 1
kx = n Pi
Sin[kx x]
(Y[y] /. solY[[1]]) /. y -> 0
(Y[y] /. solY[[1]]) /. y -> 3
ky = (m Pi)/3
Sin[ky y]
ODEt = T''[t] == -(kx^2 + ky^2) T[t]
solt = DSolve[ODEt, T[t], t]
solT = DSolveValue[ODEt, T[t], t]
solT = Expand[Assuming[kx^2 + ky^2 > 0, Simplify[solT]]]
solT = ExpToTrig[solT]
solT = Simplify[solT, {C[1] + I*C[1] == C[3], C[2] - I*C[2] == C[4]}]
solT /. {(C[1] + C[2]) -> C[3], I (C[1] - C[2]) -> C[4]}
a[n_, m_] :=
Integrate[ Sin[n π x] Sin[(m π y)/3] x y (1 - x) (3 - y), {x, 0, 1}, {y, 0, 3}]/Integrate[Sin[n π x]^2 Sin[(m π y)/3]^2, {x, 0, 1}, {y, 0, 3}]
Assuming[Element[n, Integers] && Element[m, Integers], a[n, m]]
uAp[x_, y_, t_, n0_, m0_] :=
Sum[(144 (-1 + (-1)^m) (-1 + (-1)^n))/(m^3 n^3 π^6)
Cos[1/3 Sqrt[m^2 + 9 n^2] π t] Sin[n π x] Sin[(m π y)/3], {n, 1,
n0}, {m, 1, m0}]
uAp[x, y, t, 3, 3] // TrigReduce
Plot3D[x y (1 - x) (3 - y), {x, 0, 1}, {y, 0, 3}]
Table[Plot3D[uAp[x, y, 0.1 n, 10, 10], {x, 0, 1}, {y, 0, 3},
PlotLabel -> 0.1 n], {n, 0, 10}]
Static web notebook
Author kkoud
Created Thu 11 Sep 2025 08:54:22
Κώστας Κούδας | © 2025